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RESEARCH AND DEVELOPMENT OF JOHNSON’S ALGORITHM

PARALLEL SCHEMES IN GPGPU TECHNOLOGY

S.D. POGORILYY1, M.S. SLYNKO1, Y.I. RUSTAMOV2

Abstract. The use of Johnson’s algorithm for finding the shortest path for all pairs of weighted

directed graph nodes is proposed. Its formalization in terms of Glushkov’s modified systems

of algorithmic algebras is realized. The expediency of GPGPU technology using to accelerate

the algorithm is proved. A number of schemas of parallel algorithm optimized for using in

GPGPU are obtained. Approach to the implementation of the schemes obtained with the use

of computing architecture NVIDIA CUDA is proposed. An experimental study of improved

performance by using GPU for computations is realized.
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1. Introduction

Many graph theory applications exist in the field of network analysis. Packet routing in

computer networks is one of the most important and most relevant application areas of the all-

pairs shortest paths (APSP) problem [4]. Graph theory is also used in chemistry and molecular

biology for modeling tasks. Graph is a convenient model for solving such problems as the VLSI

circuit design, phylogenetics, data mining, bioinformatics, network analysis etc. The article

considers the all-pairs shortest paths problem, which requires large computational resources.

For example, the Floyd-Warshall algorithm (1962) complexity is O(|V 3|), given |V |– a number

of graph vertices. Different algorithms offer different approaches to solve the problem: for

instance, the Dantzig algorithm is based on iterative calculations of shortest paths submatrices

of increasing dimensions, using recurrent procedure. However, the most obvious way is to

iteratively apply the single source shortest paths (SSSP) algorithm to each graph vertex. The

article considers Johnson’s algorithm ([6]), which is based on the iterative use of the Dijkstra

algorithm. Formalization schemes are given in terms of the system of algorithmic algebras

(SAA).

Modern NVIDIA GPU architectures Graphic adapters were originally used for image process-

ing only. One of the main features of modern graphic processing units is the availability of a

set of streaming multiprocessors (SM), which are universal data processing units. This allows

using the GPU computational resources for solving a wide range of non-graphic related problems

(GPGPU technology – General Purpose GPU).

CUDA (Computed Unified Device Architecture) is a parallel computing platform and pro-

gramming model invented by NVIDIA, which simplifies GPGPU programming by using high-

level API. CUDA programming model defines CPU as “host”, and GPU – as “device” [9].
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In fact, CUDA device is a multi-core processor used for computing tasks, which can only be

engaged from the CPU. According to Flynn’s taxonomy, CUDA device is close to the SIMD

classification (Single Instruction, Multiple Data). It should however be noted, that each thread

may not only execute the same instruction over the dedicated data subset, but also may have a

different execution path according to specified conditions. CUDA developers call such approach

a SIMT (Single Instruction, Multiple Threads), meaning that a single instruction is executed

simultaneously by many threads, but without any limitations on behavior of a particular thread.

Thus, the main computing unit from a software perspective is a thread. A set of concurrent

threads that can communicate using shared memory and barrier synchronization forms a block.

A set of blocks that execute the same kernel function form a grid [3, 9].

CUDA defines a C/C + + language extension, which allows writing the code to be run on

the GPU, by defining kernel functions. Each thread can be uniquely identified by a number of

context variables:

1. gridDim – vector variable that stores the grid dimensions

2. blockIdx – vector variable that stores a 3-dimensional index of a block in a grid

3. blockDim – vector variable that stores the block dimensions

4. threadIdx – vector variable that stores a 3-dimensional index of a thread in a block

5. warpSize – variable that stores size of a “warp” group [7].

For example, the following kernel function adds two numbers

2. The system of algorithmic algebras

Victor Glushkov developed a mathematical apparatus of algorithmic (microprogram) algebras

(SAA) in order to create formalized representations of algorithms which describe the operations

of the computer abstract model. Particular SAA is a dibasic algebraic system, which is based on

a set of operators and a set of conditions [1]. SAA operations are divided into logical and operator

categories. Logical include common Boolean operations and operation of a left multiplication of

operator A to condition α (designed for computation process prediction), while operator category

includes basic blocks of structured programming (sequential execution, cyclical execution etc.).

Glushkov theorem. For any algorithm a SAA exists (not unique in general case), where

the algorithm can be represented by a formalized scheme. Thus, if one defines the SAA basics

for the particular algorithm, this algorithm can be represented by the scheme, and further

transformations and optimization could be performed on the scheme, not on the algorithm itself.

Some basic operations of algorithmic algebra and their counterparts in procedural programming

languages are listed in Table 1, 2
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Table 1. SAA operation syntax.

SAA operation syntax Appropriate Pascal operator

Composition: * (or A×B) A;B;

α-disjunction α(A ∨B) if α then A else B;

α-iteration α{A} while α do A;

Inversed α-iteration {A}α repeat A until not α

Table 2. SSAA modified (SAA-M) operation syntax.

Parallel SAA-M operation

syntax

Description

Asynchronous disjunction A ||B
(or A

•
∨B)

Processes operators A and B in parallel using one

substructure (subset of the information set) for

each operator

Filtration u Unary operation that can be used for filter oper-

ator generations

Synchronous disjunction A ∨B Synchronously processes operators A and B

2.1. Johnson’s algorithm. The idea of the algorithm is to iteratively apply Dijkstra’s al-

gorithm to each of the graph vertices, so one can find the shortest paths between any pair of

vertices. Although Dijkstra’s algorithm disadvantage is the inability of its application for graphs

with negative edge weights, problem can be reduced to the case of non-negative weights, if there

are negative weighted edges in a graph, but there are no cycles of negative weight. In this case

graph can be re-weighted, replacing initial weight function w with a new weight function ŵ such

that:

1. Shortest paths remain the same: for every pair of vertices u, v ∈ V the shortest path from

u to v in terms of weight function w is also the shortest path in terms of weight function ŵ and

vice versa.

2. Weights of all edges in a graph are non-negative in terms of a new weight function (ŵ) [6].

Let’s introduce the following notations:

G(V,E) – source graph;

V – initial graph dimension;

isEdge(i, j) – predicate whose value will be true if there exists an edge from to j;

dij – length of the shortest path found from to j;

wij – weight of an edge from to j;

{hi}, i = 0, V + 1 – set of the shortest paths from the V -th vertex to all vertices of a graph;

setWay(i, j, val) – operator which sets the value (val) of the dij path;

setEdge(i, j, val) – operator which sets the edge value (val) from i-th vertex to j-th;

add(Q, i) – operator which adds element “i′′ to collection Q;

erase(Q, i) – operator which removes element “i′′ from collection Q;

eraseAll(Q,u) – operator which removes all elements from collection Q;

size(Q) – operator which returns size of a collection Q;

Thus the first step of the algorithm is creation of a new graph G′ = (V ′, E′), such that V ′ =

V
∪
{s}, where s is a new node. This includes creation of the edges {(s, v) : v ∈ V

∪
wsv = 0}.

Let’s introduce the following operators to formalize the considered algorithm:

extendGraph operator extends the given graph with a new node (with serial number V ),

adding edges with zero weight from a new node to all existing nodes:

extendGraph = i<V {setEdge(V, i, 0)}. (1)
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init operator performs initialization prior to the Dijkstra and Bellman-Ford algorithms execu-

tion, setting the shortest distances from the starting node q to all other nodes except q, as

∞ :

init(q) = i<V {i=q(setWay(q, i, 0) ∨ setWay(q, i,∞))× (+ + i)}. (2)

RelaxEdge operator carries relaxation of the edge from node u to node v. Relaxation condition

is the minimum distance from the starting node q to currently processed nodes u and v:

RelaxEdge(q, u, v) = isEdge(u,v)(duv>dqu+wuv(setWay(q, v, dqu + wuv) ∨ E) ∨ E). (3)

RelaxEdges operator carries relaxation of all edges in a graph:

RelaxEdges(q) = u<V {v<V {RelaxEdge(q, u, v)× (+ + v)} × (+ + u)}. (4)

2.2. Bellman-Ford algorithm. For correct execution of the Johnson’s algorithm, input graph

must not have negative-weight cycles. Bellman-Ford algorithm is executed for the new node

”s” in order to check for such cycles. An array of shortest paths from vertex s to all other

vertices, obtained as a result of the Bellman-Ford algorithm execution (which will contain only

non-negative values), allows transformation to the new weight function ŵ.

According to the algorithm definition, all duv are set after (V −1) relaxation cycles. Therefore,

satisfaction of the relaxation condition after (V − 1) relaxation cycles means having a negative-

weight cycle in the input graph [6], which is checked by the cnc condition:

cnc(q) =
u<V
∧

u=1

v<V
∧
v=1

(isEdge(u, v) ∧ dqv < dqu + wuv). (5)

So we retrieve the following SAA scheme for the Bellman-Ford algorithm with a starting node

q:

BellmanFord(q) = init(q)× i<V−1{RelaxEdges(q)× (+ + i)} × cnc(q). (6)

The result of the Bellman-Ford algorithm execution is a Boolean value that indicates the

presence of negative weight cycles in a graph. Also the algorithm determines the shortest paths

from the additional vertex q to all existing vertices (i.e., sets {hi}values).
If the graph has no negative weight cycles, it can be re-weighted using the next operator:

UpdateWeights = i<V+1{j<V+1{isEdge(i,j)(wij = (wij +hi−hj)∨E)× (++ j)}× (++ i)}. (7)

2.3. Dijkstra’s algorithm. Dijkstra’s algorithm is essentially serial and finds the shortest path

from a given vertex to all other vertices in a graph having the O(V log V + E)complexity.

Algorithm distinguishes two types of vertices: settled and unsettled. Node is considered as

settled if it is reachable from the starting node, and all outgoing edges either are being relaxed

during the current iteration or have been relaxed before. At the beginning of the algorithm

starting node is added to the list of settled nodes and its outgoing edges are being relaxed.

Then the node u with the lowest tentative distance from the starting node is taken as the new

frontier node, its outgoing edges are being relaxed and the node itself becomes considered as

settled. The algorithm finishes when all nodes are settled [6].

Let’s introduce additional notations for retrieving the regular scheme of a sequential Dijkstra’s

algorithm:

Q – set of the unsettled vertices;

ExtractMin(Q, q, u) – operator which finds a new unsettled frontier node u, depending a

minimum tentative distance (dqu) from a starting node:

ExtractMin(Q, q, u) = (mv = dq,Q0)× (mi = 0)× i∈Q{(v = Qi)× mv<dqv(mv = dqv×
×(mi = i)× (+ + i) ∨ E)× (v = Qi)× erase(Q,mi)}. (8)
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As a result, we retrieve the following scheme of Dijkstra’s algorithm:

SubD1(Q) = ExtractMin(Q, q, u)× v<V {RelaxEdge(q, u, v)× (+ + v)},

D(q) = init(q)× Q̸=∅{SubD1(Q)}. (9)

The result of Dijkstra’s algorithm provides an array of shortest paths from one vertex to all

others in terms of the new weight function. We should perform reverse transformation to obtain

the shortest paths in terms of original weight function:

to(D, i) = j<V {setWay(i, j,Dj + hj − hi)× (+ + j)}, (10)

where {Dj}, j = 0, V is a set of shortest paths from the node i to all other nodes (obtained via

Dijkstra’s algorithm).

Using the introduced notations, the serial Johnson’s algorithm scheme was created:

α = BellmanFord(V ),

SubJohns1(V ) = i<V {to(D(i), i)× (+ + i)},

SubJohns2(V ) = α(UpdateWeights× SubJohns1(V ) ∨ E),

Johnson = extendGraph(V )× SubJohns2(V ). (11)

In terms of optimization and acceleration algorithms, the emphasis should be placed on ac-

celerating the Dijkstra’s algorithm, because of the majority of calculations, executed in it.

3. Developing SAA scheme for parallel version of algorithm

Classic approach to APSP algorithms parallelization is based on parallel execution of several

SSSP algorithm iterations. Such approach is efficient if all the calculations are performed on

the CPU. When using GPGPU technology and CUDA model, the level of branch divergence

(difference of execution paths of different threads in the same warp) greatly affects performance

of the resulting application. Despite the fact that according to SIMT principle, different threads

may have different execution paths, the warp serially executes each branch path taken, disabling

threads that are not on that path. CPU architecture developers put a lot of effort to create

countervailing measures, including speculative execution and branch prediction. However, the

majority of such optimizations haven’t been applied to the GPU architectures, so the use of

large, highly divergent branches may lead to significant performance loss [8].

The paper presents parallel schemes, based on parallel execution of calculations within SSSP

iterations. This makes it possible to reduce the level of branch divergence to minimum.

3.1. Dijkstra’s algorithm parallel schemes. Dijkstra’s algorithm consists of two cycles-

outer selects a new, yet unsettled, node on each iteration, while inner cycle actually performs

relaxation of all outgoing edges of the previously selected node. Outer cycle parallelization

means that more than one vertex, which can be settled without affecting the validity of the

results, are chosen on each iteration. Inner cycle parallelization means that multiple outgoing

edges of the same vertex are relaxed in parallel.
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3.2. Outer cycle parallelization. At each iteration Dijkstra’s algorithm finds a node u such

that is not settled yet and which has the smallest tentative distance to the initial vertex (dqu).

Selecting more nodes at this step means achieving higher level of parallelism.

Thus, if the serial version selected a single node u (with minimal dqu), parallel version selects

u as a set of vertices v, such that each of them satisfies condition:

dqv ≤ dqu +∆, (12)

where ∆ is a minimum weight associated to any edge of the graph [8]. Such option was chosen

to save memory and computational resources by a small performance reduction. For further

performance increase (due to additional memory allocation), one may replace ∆ with ∆v, where

∆v is the minimum weight of edges, outgoing from v node. This change will provide an oppor-

tunity to adjust the acceptability criteria for each node separately, which will increase the level

of parallelism. The next schema is retrieved after transformation applied to the (8) operator:

ExtractMin(Q, q, u) = ExtractLimit(Q, q,m)× i<size(Q){dql<dqm+∆(add(u, l) ∨ E)×
×(+ + i)} × eraseAll(Q, u).

(13)

ExtractLimit – is an operator, which finds the node with a minimum tentative distance from

the starting one (similar to (8) for the serial version, but without removing the node found from

Q). Therefore we transform the (13) scheme, taking into account that each vertex from Q can

be processed in parallel, using the BQ(i) barrier, which delays further thread execution until

the specified number of threads reach the synchronization point (internal barrier formalization

is given in [5]):

PExtractMin(Q, q, u) = ExtractLimit(Q, q,m)×

×
size(Q)

•
∨
i=1

(dqi<dqm+∆(add(u, l) ∨ E)×BQ(size(Q)))× eraseAll(Q,u).
(14)

Thus, Dijkstra’s algorithm with outer loop parallelization processes multiple vertices at once,

relaxing outgoing edges in parallel. After this, threads are synchronized by a barrier, algorithm

defines a new set of nodes to be processed and the next iteration begins. As a result, the

following scheme is obtained:

PSubD1(u) =

size(u)
•
∨
l=1

(v<V (RelaxEdge(q, ul, v)× (+ + v)} ×Bu(size(u))),

Dijkstra(q) = init(q)× Q̸=∅{PExtractMin(Q, q, u)× PSubD1(u)}. (15)

In this scheme the number of threads equals to the number of vertices in the graph. General

algorithm flow is given below:

At each iteration relaxation is performed with a certain mask, so not all the vertices have

their outgoing edges relaxed simultaneously:
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As described above, node is considered as settled and processed, if its tentative distance to

the starting node is lower than a threshold:

GPGPU application developers should solve not only algorithmic problem, but also memory

bank conflicts, branch divergence optimizations and so on. For complex tasks optimization

steps are usually unobvious and degrade the readability and understandability of the code.

Therefore CUDA developers have created a template library in C++, similar to STL. Thrust

solves a number of problems associated with optimizing applications for specific architecture

or use different approaches for devices that support different versions of CUDA. Developers

can fully concentrate on solving the high-level tasks, delegating choice of particular computing

implementation to the Thrust.

In the above code block we use the library method min element, which performs array re-

duction (array boundaries are set via Q.begin() − Q.end() range) using minimum as a binary

operation. We introduce compare unsettled value structure as a permutation iterator, because

vector Q stores indexes, not the actual distances. All the calculations are performed on the

GPU due to the explicitly set thrust :: device policy [2].
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3.3. Inner cycle paralellization. As mentioned above, inner cycle parallelization means par-

allel relaxation of all outgoing edges of the selected node. Thus, operator (13) is left the same as

in serial version (8), but we change the logic of the (3) operator: now each thread represents an

edge that can be relaxed independently. Parallel edge relaxation is followed by barrier synchro-

nization, after which current node processing is complete and the algorithm selects the node for

the next iteration.

PSubD2(u) =
V
•
∨
v=1

(RelaxEdge(q, u, v)×Bv(v)),

Dijkstra(q) = init(q)× Q̸=∅{ExtractMin(Q, u)× PSubD2(u)}. (16)

3.4. Bellman-Ford algorithm parallel scheme. Since the Bellman-Ford algorithm is used

only once during Johnson’s algorithm execution, even an ideal parallel scheme will not provide

big performance increase. However, we may transform the (4) operator so it processes each node

in parallel, receiving the following parallel scheme:

RelaxEdges(q) =
V
•
∨

u=1
(u<V {RelaxEdge(q, u, v)× (+ + v)×Bv(u)}). (17)

Other operators and conditions of the algorithm remain the same.

4. Experimental results

The performance results were obtained using CPU Intel r Core TM i7 − 47703.4HHts,

8GBDDR3 RAM and GeForce GTX 770 (Kepler) GPU. Input graph was stored in a form of

adjacency matrix.

Figure 1. CPU vs. GPU implementation times depending on number of nodes in a graph.

5. Conclusions

Primary optimization technique of Johnson’s algorithm is based on improving Dijkstra’s algo-

rithm performance while increasing dimension of the input graph by using GPGPU technology.

Executing several iterations of Dijkstra’s algorithm in parallel is impractical for GPGPU, there-

fore main principles of its parallelization considered vertex parallelization (each CUDA thread
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represents a node) and edge parallelization (each CUDA thread represents an edge to be re-

laxed). The SAA-M schemes usage allows you to abstract from the specific software platform

and implementation details, paying more attention to the algorithm scheme itself, and the con-

cepts and methods of its transformation. Advantages of the parallel schemes developed using

CUDA model are experimentally confirmed. We have compared our GPU approach with the

relevant CPU implementation, obtaining up to 7x speed-up in case of GPU implementation.
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